

Outline

- DRI's role
- Research Conducted to date
- Measurement of base, shoreline PM10 dust emissions (Vic Etyemezian, PI)
- Characterization of potential playa analog sites (Mark Sweeney, PI)
- Preliminary comparison of PM10 emissions and salt mineral characteristics (James King, PI)
- Future needs

DRI's Role to date

- Perform field measurements of dust emissions and characterize pre-cursor conditions/surface properties
- Provide peer-review input for PEIR
- Participate in Air Quality Group meetings and discussions

Studies completed: Seasonal variation of shoreline emissions

- Three intensive field campaigns conducted in September, January, and March (2005-2006)
- \sim 15 shoreline and near-shoreline sites around Salton Sea
- Surface characterizations: crust strength, texture, aggregate sizes, salt chemistry (bulk)
- Measurement of dust emissions at varying wind strength using PI-SWERL
- Portable device developed at DRI
- Not as direct as large field wind tunnels
- Relationship between PI-SWERL and University of Guelph wind tunnel examined for Mojave surfaces

Sites

Grouped by Landform:

- "Paleo-lake", "Playa-like", "Barnacle beach", "Dry wash", and "Inter-dune"
- · "Paleo-Lake": Sediment from Ancient Lake Cahuilla
- Silt/clay crusts
- Some 1-3 mm snail shell deposits
- Low Salt content (< 10,000 mg/kg)2 sites: A101, A31
- Interdune
- Sandy loam
- 1 site: SS6 Very low salt

"Playa-like"

- Assumed to most closely resemble sediments when initially exposed as water recedes
- Generally silt/clay or silt/loam
- Salt content high (>10,000 mg/kg often > 50,000)
- 9 sites: A100-2, A200, A201, A32, A34-1, A34-2, SS16, SS17, SS23
- "Barnacle beach"
- Low-moderate salt
- Texture is coarse with barnacles
- 2 sites: A29, SS9

Summary

- Low elevation, fine-textured, "playa-like" soils appear to exhibit strong seasonality
- Crusts weaker in winter
- Emissions highest in winter
- Same applies to "barnacle beach" sites
- "Dry wash", "paleo-lake", and "interdune", emissions are flat, but can be high
- Comparison of Salton Sea measurements to Owens Lake indicates <u>preliminarily</u> Salton Sea not likely to be as emissive as Owens Lake
- Noting major differences in methodologies, this conclusion is very tentative

Studies Completed: Characterization of potential playa analog sites

- Examine other playas in the SW U.S. to obtain range of characteristics and dust emissions
- Identify mechanistically analogous processes that may affect SS as well
- Playas Studied: Soda Lake, Silver Lake, Bristol Lake, Mesquite Lake, Ivanpah Lake, Superior Lake, Mono Lake, Owens Lake (all in California), Carson Sink (in Nevada), and Laguna Salada (Baja Mexico)

- Literature Review
- Mapping Salt, meteorology, depth to groundwater, GW chemistry, and dust potential
- 15 m LANDSAT for geomorphic mapping
- Field work
- Reconnaissance of local geomorphology and playa environment
- Cross-check LANDSAT imagery
- Notes on surface crust tendencies
- Surface samples: particle size, salt chemistry, pH, CO3
- Some on-site PI-SWERL

Results - Overview

- Taken altogether, playas studied cover range of conditions at SS
- · But, no single analogue found
- · Most emissive: Playa margins, fluvial deltaic, areas with sand dunes close to playa
- I.e. Highest emissions found where sand available
- Weak efflorescent salts result in seasonally high suppress emissions emissions whereas hard crusts and vegetation

Preliminary assessment of PM10 emissions and salt mineral characteristics

- One intensive field visit was conducted in February 2007
- Examine surface salt composition and mineralogy of recently exposed shoreline 12 shoreline and near-shoreline sites around Salton Sea – "playa-like"
- Measure PM10 emissions with PI-SWERL
- Identify correlations of soil surface salt characteristics and emissions around the Salton

Surface Salt Chemistry

- Soil crusts form in open systems making the use of phase diagrams (T vs. RH) ineffective to predict mineralogy
- High solubility result in large temporal and spatial variations
 Mineral assemblages and crystal habits are
- Mineral assemblages and crystal habits are specific to the types of minerals in solution
 Organic matter, ion concentration, rate of crystallization, and pH also affect crystal habit
- Difficult to analyze by SEM/XRD because of often layered and soft crystal habits

Surface Salt Mineralogy

- Mirabilite/Thernadite Sodium sulfates
- Hydrated/dehydrated form of sodium sulfate
- Mirabilite more stable in cooler T and higher RH, and precipitates in tabular form
- Thernadite precipitates in acicular form
- Eugsterite/Glauberite Calcium sulfates
- Hydrated/dehydrated form of sodium-calcium sulfate
- Glauberite tends to form planar or prismatic crystals
- Eugsterite forms acicular crystals
- Precipitates as many forms: euhedral cubic to anhedral massive
 Cements other salt crystals together into hard interlocking fabric
- Also exists as individual loose crystals

Chemistry of salts at Salton Sea

Mineral	Chemical composition	Crystal system
Halite	NaCl	Isometric Hexoctahedral
Eugsterite	Na ₄ Ca(SO ₄) ₃ • 2H ₂ O	monoclinic
Glauberite	Na ₂ Ca(SO ₄) ₂	Monoclinic-prismatic
Mirabilite	Na ₂ SO ₄ • 10H ₂ O	Monoclinic-prismatic
Thenardite	Na ₂ SO ₄	Orthorhombic-dipyramidal
Bloedite	Na ₂ Mg(SO ₄) ₂ • 4H ₂ O	Monoclinic-prismatic
Hexahydrite	MgSO ₄ • 6H ₂ O	Monoclinic-prismatic
Gypsum	CaSO ₄ • 2H ₂ O	Monoclinic-prismatic
Bassanite	2CaSO ₄ • H ₂ O	Monoclinic, pseudohexagonal

- Soil Analyses
- XRD (X-ray diffractometry)
- SEM (Scanning electron microscopy)
- Texture, CaCO₃, EC, OC
- Soil profiles, penetrometer,
- $-PM_{10}$ fluxes

PI-SWERL tests

Discussion - High Emissions

- Highest emissions associated with prismatic or acicular habits (glauberite, eugsterite, thenardite) creating a loose fabric of stacked, long crystals.
- When other minerals were present (e.g., halite, gypsum) the stacks of crystals became more cemented
- Sites SS23-1 and A201-2 exhibited these characteristics

SS23-1

Discussion – Low Emissions

- Low emissions were also controlled by salt mineralogy and crystal morphology
- In most cases at these sites the same minerals as the high emission sites were present according to the XRD results (greater than 5%) BUT crystal habit was different
- Sites with low emissions with a salt crust include JR1-2 and 100-3

A100-3

Summary

- Genesis of friable crusts seems to be determined by the presence of water and the cycle of hydration/dehydration
- Shallow slopes and areas close to the shoreline are consistently subject to partial wetting and drying resulting in friable salt crust development over large areas
- Northern and southern halves of the Salton Sea are associated with Mg and Ca based salts, respectively

Considerations for Future Efforts

- Why do the same minerals crystallize in different formations (habits)?
- Wetting/drying cyclesRate of shoreline retreat
- Ion concentration, organic matter content, moisture
 What fraction of time are potentially friable crusts emissive?
- Climatology moisture, temperature, sunlight
 Spatial distribution
- Wind
- Are crust properties temporary or permanent?
- Does prolonged drying cement/loosen initial crust properties?
- Are there engineering solutions that capitalize on these crust properties?

Supplemental

